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Applying multilevel regression weighting when only population
margins are available

Christian Bruch and Barbara Felderer

GESIS Leibniz Institute for the Social Sciences, Mannheim, Germany

ABSTRACT
Reliable survey data is needed to be able to infer survey findings to the
general population. However, self-selection or panel attrition of the survey
respondents may bias survey estimations. To tackle these challenges,
weighting adjustments have been established to correct for different inclu-
sion probabilities and to reduce bias in the survey. These strategies adjust
the survey data to match known population statistics (e.g., means and pro-
portions). The usefulness of weighting strategies depends on the bench-
marks of the variables available from official statistics or other highly
reliable sources, for instance, whether population information on the
weighting variables is available as joint distributions of all variables or as
margins only. While complex weighting strategies have been developed
for poststratification using joint distributions (for example multilevel regres-
sion and poststratification), these methods are not applicable when only
population margins are available. In this paper, we propose two practical
approaches that combine the multilevel regression weighting method with
weighting algorithms using marginal population distributions only. In a
simulation study, we applied both approaches to volunteer samples.
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1. Introduction

A major goal of political and social research is to make statements about some population of
interest, e.g., all voters in a country. This information is, for example, used to inform the political
decision-making processes. Usually, it is not possible to survey an entire population and therefore
population samples are drawn. Findings from the surveyed samples are then inferred to the popu-
lation. Doing so, survey data are usually weighted to compensate for different probabilities of
selection, nonresponse, noncoverage (see, for example, Kalton and Flores-Cervantes 2003) or
stronger deviations between the sample and the population as a result of a systematic not random
selection process (see, for example, Wang et al. 2015). The general idea of weighting (for a
detailed overview of weighting procedures see for example Kalton and Flores-Cervantes 2003) is
to make the survey sample more similar to known benchmark characteristics from official statis-
tics for the target population. More specifically, the respondent sample is weighted on some
weighting variables to match the target population’s distributions of the corresponding character-
istics. Two kinds of weighting approaches can be distinguished, depending on the kind of popula-
tion benchmarks: poststratification procedures (see for example Little 1993) that require joint
distributions of the benchmark data or procedures like raking (Deming and Stephan 1940) that
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are based on population margins. Usually, population margins are easier to obtain than joint dis-
tributions, are available in a higher number and on a smaller aggregation level, and can be com-
bined from different official data sources for the same target population. Data protection
regulations usually put requirements on the delivery of joint distributions from official statistics.
Such requirements are minimum case numbers in the distribution cells. As a consequence, the
categories of the distributions need to be collapsed, or certain variables need to be dropped from
joint distributions if the requirement is not fulfilled. When combining official data from different
data sources, joint distributions of all variables cannot be obtained.

Weighting methods require an optimal data structure to achieve a reasonably large bias reduc-
tion. First, weighting variables need to be highly correlated to the survey variables of interest.
Second, weighting variables need to be correlated to the inclusion mechanism as well to account
for particular respondent groups that participate to a higher degree than others. Furthermore, the
reduction of estimation bias and the reliability of the estimation may depend heavily on the sam-
ple size. In case of small sample sizes, weights and the subsequent estimation may be highly vari-
able. Also, weighting cells must not be too sparse or even empty. Especially, traditional weighting
procedures require at least one element in the respondent sample cells.

To deal with sparse or empty cells, Gelman and colleagues proposed a combination of post-
stratification with multilevel regression models (multilevel regression and poststratification
(MRP), Gelman and Little 1997; Wang et al. 2015). However, like standard poststratification, the
MRP approach needs joint distributions and cannot be applied when only population margins
are available.

In this study, we adapt the multilevel regression weighting method to situations in which only
marginal population distributions are available. We propose two practical approaches using multi-
level regression weighting that do not need joint distributions, but can be applied to margins.
Our approaches combine well established methods and algorithms guaranteeing high applicability.
We specifically aim to develop approaches that can be used easily by any scientist working with
survey data and therefore only use well established standard R functions for all our analysis.

We conduct a simulation study to evaluate how the proposed approaches perform compared to
the established methods. In our simulation, we aim at giving a realistic example of data that is com-
monly used in social sciences. In absence of a sampling frame and with the increasing potential to
survey a population online, volunteer panels became very attractive over the last decade (Callegaro,
Manfreda, and Vehovar 2015). In our simulation, we mimic this kind of data collection because it
may lead to a skewed inclusion process in practical application with many empty weighting cells and
highly different distributions between the sample and population due to self-selection process. This
allows us to evaluate different weighting and estimation procedures under complex circumstances.

The remainder of our paper is structured as follows. In Sec. 2, we provide an overview of the
standard raking and poststratification approaches, and explain in more detail the multilevel
regression and poststratification approach of Gelman and colleagues (Gelman and Little 1997;
Wang et al. 2015). Next, we introduce two possibilities for extending the multilevel regression
approach to situations when only marginal population information is available. In Sec. 4, we per-
form a Monte Carlo simulation study to compare our methods with traditional raking.
Furthermore, to illustrate the loss of information when only marginal distributions are available,
we compare our approaches to the multilevel regression and poststratification approach that uses
the richer information from joint distributions. The results of this simulation study are presented
in Sec. 5. Section 6 provides a summary and conclusion.

2. Traditional weighting procedures

Let us assume that we intend to make statements about the variable of interest y. In this study,
the variable y is a binary variable taking values 1 and 0. In our research, we draw samples from a
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population U of size N by applying a volunteer sampling scheme. Let us assume that the final set
of respondents that participate in the survey can be described by R of size n. The corresponding
sample realization for variable y is y1:::yi:::yn: As mentioned in Sec. 1, some people are more
likely to participate and more likely to be included in the final respondent sample than others. In
practice, the aim is to model the inclusion mechanism as best as possible. To achieve this aim, it
is necessary to include as many relevant auxiliary variables as possible that are highly connected
to the inclusion mechanism in the weighting and complex estimation process. We indicate the
auxiliary variables that are collected in the survey by x1:::xG, where G is the number of auxil-
iary variables.

In following sections, we assume that we have information on weighting variables x1 with cate-
gories j ¼ 1:::J, x2, with categories k ¼ 1:::K, x3 with categories l ¼ 1:::L, and x4 with catego-
ries v ¼ 1:::V:

2.1. Poststratification

Let us assume that the auxiliary variables x1:::x4 are also measured in the survey. In this situation,
the auxiliary variables can be used as weighting variables. Poststratification aims at weighting the
survey sample on the basis of weighting cells to match the population quantities of these cells.
Frequently, cells are defined to correct for differential inclusion propensities between cells
(Gelman and Carlin 2000).

Cells are created from the cross-classifications (joint distributions) of the weighing variables
for the population and for the survey. The cell sizes of the population are given by Njklv, and the
cell sizes of the survey by njklv, and the set of respondents who belong to cell jklv is described
by Rjklv.

The estimated population proportion of y after poststratification p̂posty and the application of
the volunteer sampling scheme described above is given by

p̂posty ¼
XJ

j¼1

XK
k¼1

XL
l¼1

XV
v¼1

Njklv=njklv �
P

i2Rjklv
yi

N
(1)

Poststratification to compensate for nonresponse is based on the assumption that respondents
within each cell represent the nonrespondents of that cell as well (Kalton and Flores-Cervantes
2003, p. 86). Estimates may not be reliable in the case of a small number of units within the cells.
Sparse cells can result in a large variability in the distribution of the weighting adjustments
according to Kalton and Flores-Cervantes (2003) and large standard errors of the estimates
according to Ghosh and Rao (1994) and Little and Vartivarian (2005).

2.2. Raking

Let us now assume that we only have the marginal population distributions N�j, N�k, N�l, and
N�v of the weighting variables x1, :::, x4: Following Kalton and Flores-Cervantes (2003) as well as
Ireland and Kullback (1968), raking can be used to compensate for inclusion bias. Weights are
computed for the elements of the participation set in each cell by dividing the marginal popula-
tion sizes N�j, N�k, N�l, and N�v by their corresponding marginal sample participation set sizes
n�j, n�k, n�l, and n�v: These adjustments are executed in a row from variable to variable and the
process includes readjustments are done until convergence is achieved. Usually convergence is
achieved very fast, but in some exceptions, it cannot be achieved or requires a lot of time (Kalton
and Flores-Cervantes 2003). The raking procedure results in the raking weights wi, rak for each

element i. The corresponding estimator of the population proportion p̂raky using the raking

weights is given by:
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p̂raky ¼ 1
N
�
X
i2R

wi, rak � yi, (2)

where wi, rak are the raking weights.
Raking is based on two main assumptions. First, the inclusion probabilities of all the elements

within each cell jklv have to be equal. Second, the participation probabilities pjklv in each cell jklv
are of the form pjklv ¼ /j � /k � /l � /v, where /j,/k,/l, and /v are the effects of the several
weighting variables (Kalton and Flores-Cervantes 2003). However, in a case of a violation of the
assumptions, the estimate may be biased (Kalton and Flores-Cervantes 2003, p. 87).

2.3. Advantages and disadvantages of raking and poststratification weighting procedures

The main advantage of raking as compared to poststratification is that it only needs marginal
population benchmark distributions instead of joint distributions. In practical applications, popu-
lation joint distributions often are available for few socio-demographic variables such as age, gen-
der, or education in combination with higher aggregated geographic areas. Moreover, in many
countries, the availability of population joint distributions is restricted by data protection clauses.
Data protection regulations often require anonymisation of population joint information in sparse
cells. To gain anonymity, variable categories frequently are combined until cross-classified cells
show a sufficiently large number of individuals. The more weighting variables that are included,
the more likely sparse cells become. Moreover, joint distributions cannot include weighting varia-
bles from different data sources, which is specifically relevant when nonstandard variables are
included from a particular data source. However, in a case where population joint distributions
are available for the same weighting variables and on the same aggregation level as the population
margins, poststratification is to be preferred over raking, since it can incorporate the more
detailed information. In practice, deciding between raking and poststratification often depends on
the available population information. In contrast to poststratification, raking has the advantage of
a smaller variability of the weights. Kalton and Flores-Cervantes (2003) conclude that in a case of
a large number of cells, raking may be preferable, whereas poststratification is more appropriate
when the number of cells is small and consist of many elements.

Both procedures share a common characteristic that they are applied to the participation set R.
In the case of a highly skewed inclusion process, samples in practice may show many sparse or
even empty weighting cells in the respondent sample. Such cells may destabilize the overall esti-
mation and standard weighting procedures as described previously may not perform very well or
cannot be applied to cells without sample elements. Frequently, such cells are not considered in
the estimation, or sparse and empty cells are combined with larger cells. However, such proce-
dures lead to information loss, particularly when benchmark information for such small or empty
cells is in principal available or can be reproduced. Thus, for situations with many sparse or
empty cells, complex estimation and weighting procedures are needed.

3. Multilevel regression approaches for margins only

One approach that can deal with sparse or empty weighting cells is the multilevel regression and
poststratification approach (MRP) proposed by Gelman and colleagues (Gelman and Little 1997;
Wang et al. 2015; Gelman and Hill 2006; Gelman et al. 2013; Park, Gelman, and Bafumi 2004).
Because our approaches are based on the idea of MRP, we will briefly discuss the benefits and
challenges of the MRP approach. In the following, we use a very similar nomenclature as used in
Wang et al. (2015). The MRP approach improves the poststratification weighting described in
Sec. 2.1 by including a multilevel logistic regression model. This multilevel model includes the
weighting variables x1:::x4 and can include additional information on cell level. This information
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does not have to be measured in the survey. By using a multilevel logistic regression model, it is
possible to estimate the propensity Pðyi ¼ 1Þ for each cross-classified weighting cell jklv. Thus,
estimations can also be received for sparse or empty weighting respondent sample cells by bor-
rowing strength of cells with many elements. This procedure is commonly used in small area sta-
tistics (Ghosh and Rao 1994), and it also helps to stabilize the overall estimation. Recently, the
MRP approach is discussed in terms of its application to nonprobability samples to reduce both
bias from nonresponse and the sampling process (Wang et al. 2015).

According to Wang et al. (2015) an improvement of the estimation further depends strongly
on the complexity of the multilevel logistic regression model building. The MRP approach has
the advantage that the multilevel estimation model can include variables or information that can-
not be included in the weighting model. For example, continuous variables including higher level
information regarding the weighting cells, such as state level information or information of other
superordinate regional areas, can be accounted for in the estimation model. Also, the interaction
terms of included variables can be included in the model, as well as different functional forms of
the predicting variables. The only requirement is that this kind of information can be assigned
unambiguously to the weighting cells. As mentioned in Wang et al. (2015), in a practical applica-
tion, it may be necessary to build complex multilevel models that include many variables to pro-
duce significant improvements in an estimation.

The multilevel regression estimation has great potential and can improve estimation as com-
pared to standard poststratification. However, a key requirement of the MRP approach is that the
population size in all poststratification cells Njklv, and thus, the joint distributions of the weighting
variables in the population are available. Therefore, the same restrictions on population bench-
marks hold as for the standard poststratification. Joint distributions are rarely given for many
variables on a small aggregation level in practical applications. To be able to utilize the advantages
of the multilevel regression approach, methods are required that combine the multilevel regres-
sion approach with weighting procedures that only use marginal population distributions.

In the last years, only few methods for a multilevel regression approaches using margins only
were proposed. For example Kastellec et al. (2015) use data from multiple surveys to construct
synthetic joint distributions. This approach, however, is limited to the rare practical cases in
which multiple surveys are available (Leemann and Wasserfallen 2017).

Leemann and Wasserfallen (2017) propose two methods applying the multilevel regression
approach with population margins in the case when only one survey is available. In their first
approach, the joint distribution of the weighting variables is estimated by a simple multiplication
of the marginal distributions. This assumes independent weighting variables that in practical
applications are rarely given. In their second approach, Leemann and Wasserfallen (2017) con-
struct joint distributions utilizing survey correlations for the weighting variables. This approach is
illustrated for a situation in which some variables are available as joint distributions and others as
margins only. The authors state that this approach in general can be used when only population
margins are available but do not show how to do so. Since no joint distributions are available in
many applications, we propose a method that is specifically designed to make use of population
margins only.

An application of the multilevel regression approach with marginal distributions can also be
achieved by Bayesian Raking (Si and Zhou 2021). The procedure by Si and Zhou (2021) is based
on a Bayesian framework, and population cell estimates are drawn together with the other rele-
vant parameters from a posterior distribution. This certainly offers great advantages compared to
non-Bayesian procedures. However, since non-Bayesian procedures are commonly used in social
sciences, we propose two procedures to combine the MRP approach with marginal distributions
that do not use any population joint distribution and that do not require multiple surveys. These
procedures for applying the multilevel regression approach to situations in which only population
margins of weighting variables are available are presented in the following sections.
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3.1. Multilevel regression and raking

To apply the multilevel regression approach in situations in which only marginal population
information of the weighting variables is available, one possibility is to combine the multilevel
regression approach and the raking procedure described in Sec. 2.2. We call this approach multi-
level regression and raking (MRR).

The MRR approach can be derived for a bivariate outcome variable y as follows: first, to com-
bine the raking approach with the multilevel approach, the estimator in Eq. (2) has to be rewrit-
ten in a form that includes the estimated cell probabilities p̂jklv:

We do not consider individual weights, e.g., design or sampling weights, in the estimation (but
briefly discuss the inclusion of sampling weights in Sec. 6). Thus, the raking weights wi, rak of
each element in a weighting cell jklv in (2) are the same:

wi, rak ¼ wjklv, rak, 8i 2 Rjklv, (3)

where wjklv, rak are the raking weights in cell jklv. Thus, the estimator (2) can be expressed as

p̂MRR
y ¼ 1

N
�
XJ

j¼1

XK
k¼1

XL
l¼1

XV
v¼1

wjklv, rak �
X
i2Rjklv

yi

¼ 1
N
�
XJ

j¼1

XK
k¼1

XL
l¼1

XV
v¼1

wjklv, rak � njklv �
P

i2Rjklv
yi

njklv

¼ 1
N
�
XJ

j¼1

XK
k¼1

XL
l¼1

XV
v¼1

wjklv, rak � njklv � p̂jklv,

(4)

where njklv is the number of sample units in cell jklv, and p̂jklv ¼
P

i2Rjklv
yi

njklv
are the estimated cell

probabilities in cell jklv. Thus, in contrast to Eq. (2), the estimator in Eq. (4) describes the estima-
tor that includes the raking weights in a form that directly includes the estimated cell probabil-
ities. In detail, the procedure combining multilevel regression with raking can be described for a
bivariate outcome variable y as follows:

1. First, the raking approach is applied to the cells formed by weighting variables using their
marginal population distribution to obtain the raking weights wjklv, rak:

2. The second step corresponds to the multilevel and poststratification approach (see Wang
et al. 2015; Gelman and Little 1997). A multilevel logistic regression model is used to regress
y on the weighting variables x1:::x4, where respondents (indexed by i) are nested within a
hierarchical structure, for example, geographical regions:

py, i ¼ Pðyi ¼ 1Þ ¼ logit�1ðaþ bx1j i½ � þ bx2k i½ � þ bx3l i½ � þ bx4v i½ �Þ

where bx1j½i� � Nð0,r2x1Þ, bx2k½i� � Nð0,r2x2Þ, bx3l½i� � Nð0,r2x3Þ, and bx4v½i� � Nð0,r2x4Þ are the varying

coefficients relating to the weighting variables, and r2x1 � W1ð:::Þ, r2x2 � W2ð:::Þ, r2x3 �
W3ð:::Þ, and r2x4 � W4ð:::Þ are their corresponding variance parameter.
Originally, the MRP approach was developed in a Bayesian framework. However, Ghitza and
Gelman (2013) use the approximate marginal maximum likelihood estimates from R’s lme4
package (Bates et al. 2015) (a further example of using the lme4 package for MRP is given in
Gelman and Hill 2006). To be consistent with these authors, we use the same approach for
the MRP approach and our modifications in our simulation study, which has the additional
advantage of only using well established and easy-to-use R procedures.
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3. The third step also corresponds to the multilevel and poststratification approach (see Wang
et al. 2015; Gelman and Little 1997): The cell probabilities p̂jklv are estimated with a logistic
model by using the estimated parameters â, b̂

x1
j½i�, b̂

x2
k½i�, b̂

x3
l½i�, b̂

x4
v½i�, r̂2

x1 , r̂
2
x2 , r̂

2
x3 , and r̂2

x4 from the
multilevel logistic regression model.

4. The overall proportion py is estimated according to Eq. (4):

p̂MRR
y ¼ 1

N
�
XJ

j¼1

XK
k¼1

XL
l¼1

XV
v¼1

wjklv, rak � njklv � p̂jklv (5)

In contrast to the standard raking procedure, the MRR approach may improve the estimation
by stabilizing the estimation for sparse cells. Furthermore, improvements may be possible by
using complex model building, particularly by including variables in the multilevel logistic regres-
sion model that cannot be used in the weighting model.

However, a disadvantage in comparison to the multilevel poststratification approach is that
cells without sampling elements are not considered, which is indicated in formula (5). If a sample
cell jklv does not contain elements, njklv takes the value zero, and the estimated propensity of this
cell is not included. Also, many raking procedures do not consider weighting cells without ele-
ments in the sample. Thus, raking weights wjklv, rak are, in most cases, not available for weighting
cells without elements. Due to the non-consideration of weighting cells without elements, some
larger information loss may occur compared to the multilevel regression and poststratification
approach. Furthermore, the same strong assumption is made as for ordinary raking, namely that
the inclusion probabilities of cell jklv are a multiplied combination of the effects /j,/k,/l, and
/v (Kalton and Flores-Cervantes 2003).

3.2. Multilevel regression and population cell size estimation

The method described in the previous section uses a combination of the raking procedure and
the multilevel logistic regression approach. To overcome the problem that cells without elements
cannot be considered in the MRR approach, the aim of the following approach is to combine
multilevel logistic regression and weighting using marginal information to include weighting cells
without sampling elements. We propose a procedure that combines the multilevel logistic regres-
sion approach and the population cell size estimation (MRPCS). The starting point of the
MRPCS procedure is the point estimator of the multilevel regression and poststratification
approach (see Wang et al. 2015; Gelman and Little 1997):

p̂MRP
y ¼

XJ

j¼1

XK
k¼1

XL
l¼1

XV
v¼1

Njklv � p̂jklv
N

, (6)

where Njklv is the number of population elements in cell jklv.
This point estimator requires the population joint distributions of the weighting variables in

the form of the cell population sizes Njklv and the cell probabilities pjklv estimated by the multi-
level logistic regression. Thus, also in the MRPCS, the p̂jklv are estimated by using a multilevel
logistic regression. However, in contrast to the MRP approach, the MRPCS approach needs to be
applicable in situations in which the cell population sizes Njklv are not available. Thus, the use of
the MRPCS procedure is to estimate the cell population sizes N̂ jklv by utilizing the marginal
population information of the weighting variables. The purpose is to estimate the population size
for all weighting cells, particularly, cells without elements. Next, these estimated population sizes
are combined with the probabilities that are estimated for each cell by the multilevel logistic
regression model. Since these probabilities also are estimated for cells without elements, these
cells also are included in the estimation of the overall proportion.
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To estimate the population sizes for each weighting cell, for example, the procedures described
in Little and Wu (1991) can be used: weighted least squares, maximum likelihood method, or
Minimum v2: All three procedures have a common characteristic in that they find estimates for
Njklv by adjusting the sample cell frequencies to the known marginal population sizes
N�j, N�k, N�l and N�v that satisfy:

XK
k¼1

XL
l¼1

XV
v¼1

N̂ jklv ¼ N�j

XJ

j¼1

XL
l¼1

XV
v¼1

N̂ jklv ¼ N�k

XJ

j¼1

XK
k¼1

XV
v¼1

N̂ jklv ¼ N�l

XJ

j¼1

XK
k¼1

XL
l¼1

N̂ jklv ¼ N�v

The joint distributions are estimated under these restrictions and by minimizing or maximiz-
ing certain criteria (Little and Wu 1991). The procedures differ in their underlying model that
relates the sampled and target population, as well as in their optimization criteria. For example,
the weighted least squares method is based on the relative squared deviation of the estimated cell
population sizes to their frequency in the sample. The underlying model relating the sample and
target population of the procedures that estimates the cell population sizes assumes additive
effects of the weighting variables on the inclusion in the participation set R (Little and Wu 1991).
Thus, the procedures may not perform very well when the inclusion mechanism is dependent on
strong interactions between the weighting variables. This assumption can be met by choosing the
appropriate weighting variables.

The MRPCS procedure can be described as follows (step 2 and step 3 again correspond to the
MRP approach as described in Wang et al. (2015) and Gelman and Little (1997)):

1. Weighted least squares, maximum likelihood method, or Minimum-v2 are applied to obtain
estimates of the weighting cell population sizes N̂ jklv for each cell by using the marginal
population sizes N�j, N�l, N�k, and N�v:

2. A multilevel logistic model is defined by

py, i ¼ Pðyi ¼ 1Þ ¼ logit�1ðaþ bx1j i½ � þ bx2k i½ � þ bx3l i½ � þ bx4v i½ �Þ

where bx1j½i� � Nð0,r2x1Þ, bx2k½i� � Nð0,r2x2Þ, bx3l½i� � Nð0,r2x3Þ, and bx4v½i� � Nð0,r2x4Þ are the varying

coefficients relating to the weighting variables and r2x1 � W1ð:::Þ, r2x2 � W2ð:::Þ, r2x3 � W3ð:::Þ,
and r2x4 � W4ð:::Þ are their corresponding variance parameter. We apply again the same pro-
cedure that is used in Ghitza and Gelman (2013) for the MRP approach. The approximate
marginal maximum likelihood estimates from R’s lme4 package are applied to estimate the
parameters of the model.

3. The cell probabilities p̂jklv are estimated with a logistic model by using the estimated parame-

ters â, b̂
x1
j½i�, b̂

x2
k½i�, b̂

x3
l½i�, b̂

x4
v½i�, r̂2

x1 , r̂
2
x2 , r̂

2
x3 , and r̂2

x4 from the multilevel logistic regression model.

4. The overall proportion py is estimated by

p̂MRPCS
y ¼

XJ

j¼1

XK
k¼1

XL
l¼1

XV
v¼1

N̂ jklv � p̂jklv
N

: (7)
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This is the same formula used for the multilevel regression and poststratification approach in
Eq. (6), with the exception that Njklv is substituted by N̂ jklv, which is the cell population sizes esti-
mated by weighted least squares, maximum likelihood method, or Minimum-v2:

In contrast to the MRR approach described in the previous section, the MRPCS approach has
the advantage that it also can include cells without sample elements in the estimation of the
population distribution of y. Since this procedure can include more information, it may improve
the estimation.

In addition, the MRPCS approach shares the advantages of the MRR procedure. The estima-
tion of sparse weighting cells can be improved by borrowing strength of richer cells. Thus, the
overall estimation can be improved. The same advantages hold concerning the estimation using
complex multilevel regression modeling.

The success of the procedure depends heavily on the estimation of the cell populations sizes
and the reproduction of the population joint distributions. Thus, it is important that the assump-
tions that underlie the procedures for estimating the cell population sizes are met. Furthermore,
unrealistic estimated cell population sizes, such as population sizes smaller than 1, are possible,
for example, in the case of many empty cells in a survey.

4. Simulation study design

We evaluate the performance of the different weighting and complex estimation procedures by
using a Monte-Carlo simulation study. The Monte-Carlo simulation study is based on a selection
mechanism that simulates volunteer samples, a self-selection sampling procedure often applied in
practice. This sampling procedure likely leads to a skewed inclusion process in practical applica-
tions, with many empty weighting cells and highly different distributions between the sample and
population. Such a challenging setting is a good basis to compare the previously presented
weighting and estimation procedures.

This simulation study is explained in the following sections.

4.1. Population and sample generation

We simulate four weighting variables x1:::x4, one variable x5 that is only available in the multi-
level model, and one dependent variable of interest y.

4.1.1. Weighting variables
To generate the weighting variables, we create a synthetic population first by drawing four con-
tinuous latent variables xU1cont , x

U
2cont , x

U
3cont and xU4cont from a multivariate normal distribution with

f ¼ ðxU1cont , xU2cont , xU3cont , xU4contÞ and parameters

f � Nðl,RÞ,
where the vector of expectations l and the covariance matrix R are defined by

l ¼ ð200, 50, 80, 0:1Þ
and

R ¼
1, 000 170 35 10
170 100 5 10
35 5 75 10
10 10 10 10

0
BB@

1
CCA:

To draw the four variables from a multivariate normal distribution, we use the R-Package
mvtnorm (Genz et al. 2019). In a next step, we categorize the continuous variables to mimic

COMMUNICATIONS IN STATISTICS - SIMULATION AND COMPUTATIONVR 9



more realistic data sets usually available for social sciences. Data sets in social survey practice
consist of many categorical variables, and we generate the categorical weighting variables in our
simulation by using the following procedure.

We derive the first categorical variable xU1 from variable xU1cont by collapsing the continuous
variable into five categories:

xU1 :¼

1 for xU1cont <¼ 175,
2 for 175 < xU1cont <¼ 190,
3 for 190 < xU1cont <¼ 200,
4 for 200 < xU1cont <¼ 220,
5 for 220 < xU1cont

8>>>>><
>>>>>:

(8)

We generate the second variable xU2 by building five categories using the continuous variable’s
xU2cont quantiles:

xU2 :¼

1 for xU2cont <¼ Q0:25ðxU2contÞ,
2 for Q0:25ðxU2contÞ < xU2cont <¼ Q0:5ðxU2contÞ,
3 for Q0:5ðxU2contÞ < xU2cont <¼ Q0:75ðxU2contÞ,
4 for Q0:75ðxU2contÞ < xU2cont <¼ Q0:9ðxU2contÞ,
5 for Q0:9ðxU2contÞ < xU2cont ,

8>>>>>>><
>>>>>>>:

(9)

where Q0:25ðxU2contÞ is the 0.25-quantile of variable xU2cont , Q0:5ðxU2contÞ is the 0.5-quantile of variable

xU2cont , Q0:75ðxU2contÞ is the 0.75-quantile of variable xU2cont , and Q0:9ðxU2contÞ is the 0.9-quantile of vari-

able xU2cont :
Similarly, the third variable xU3 results from the quartiles of the variable xU3cont :

xU3 :¼

1 for xU3cont <¼ Q0:25ðxU3contÞ,
2 for Q0:25ðxU3contÞ < xU3cont <¼ Q0:5ðxU3contÞ,
3 for Q0:5ðxU3contÞ < xU3cont <¼ Q0:75ðxU3contÞ,
4 for Q0:75ðxU3contÞ < xU3cont ,

8>>>>><
>>>>>:

(10)

where Q0:25ðxU3contÞ is the 0.25-quantile of variable xU3cont , Q0:5ðxU3contÞ is the 0.5-quantile of variable

xU3cont , and Q0:75ðxU3cont Þ is the 0.75-quantile of variable xU3cont :
The fourth variable xU4 is based on xU4cont following the same categorization scheme as variable

xU2cont :

xU4 :¼

1 for xU4cont <¼ Q0:25ðxU4contÞ,
2 for Q0:25ðxU4contÞ < xU4cont <¼ Q0:5ðxU4contÞ,
3 for Q0:5ðxU4contÞ < xU4cont <¼ Q0:75ðxU4contÞ,
4 for Q0:75ðxU4contÞ < xU4cont <¼ Q0:9ðxU4contÞ,
5 for Q0:9ðxU4contÞ < xU4cont ,

8>>>>>>><
>>>>>>>:

(11)

Thus, the four weighting variables xU1 , x
U
2 , and xU4 include five categories, and variable xU3 con-

sists of four categories.

4.1.2. Survey variable of interest
We simulate a binary survey variable of interest yU to be dependent on the weighting variables.
We draw the variable yU from a Bernoulli-distribution yi � Bðpy, iÞ using the R-package

10 C. BRUCH AND B. FELDERER



LaplacesDemon (Statisticat and LLC 2018). Each sample element’s propensity pUy, i for element i to
choose category yi ¼ 1, depending on the characteristics xU1 :::x

U
4 , is modeled by using a logistic

model:

pUy, i ¼
exp

�
dþ c

xU1
j i½ � þ c

xU2
k i½ � þ c

xU3
l i½ � þ c

xU4
v i½ �
�

1þ exp
�
dþ c

xU1
j i½ � þ c

xU2
k i½ � þ c

xU3
l i½ � þ c

xU4
v i½ �
� : (12)

The vectors cx
U
1 :::cx

U
4 encompass values for each variable category, and d is the intercept. These

parameters determine the strength of the relationships between the weighting variables and the
outcome of interest.

Simulated this way, all the marginal and joint distributions of the weighting variables in the
population are set and known for the entire population, as well as the benchmark information of
the survey variable of interest.

4.1.3. Inclusion model
The modeling of the inclusion mechanism to create the volunteer sample is based on a the pro-
cedure to model the nonresponse mechanism in the simulation study of Enderle, M€unnich, and
Bruch (2013). In detail, we use the following modified procedure.

First, we model the propensity xU
i to be included in the survey to be dependent on xU1 :::x

U
4 ,

which means that respondents with certain characteristics are more likely to participate than
others. We model the inclusion process using a logistic model:

xU
i ¼

exp
�
kþ n

xU1
j i½ � þ n

xU2
k i½ � þ n

xU3
l i½ � þ n

xU4
v i½ �
�

1þ exp
�
kþ n

xU1
j i½ � þ n

xU2
k i½ � þ n

xU3
l i½ � þ n

xU4
v i½ �
� : (13)

The vectors nx
U
1 :::nx

U
4 encompass values for each variable category, where the value of each ref-

erence category is set to zero, and k is the intercept. The different values also are chosen depend-
ing on the scenario and the desired correlation between the inclusion mechanism and the
weighting variables. The higher the correlations are, the more skewed the inclusion process gets.
Inclusion propensities in practical applications are not known. Thus, in the simulation, they only
are used to model the inclusion process but not included in the subsequent weighting
and estimation.

To create a participation indicator that is either zero or 1 from the inclusion probability xU
i ,

we drew random numbers ui, :::ui, :::uN from a uniform distribution. A unit participates in the
survey if xU

i > ui and refuse to participate if xU
i < ui: Thus, we select the 1,000 units that

describe the volunteer sample. As explained at the beginning of the paper, the corresponding var-
iables of size of the sample are indicated by y, x1, x2, x3, and x4:

However, a Monte-Carlo simulation study consists of random procedures that can be repeated
a certain number of times. For example, when applying a design-based Monte-Carlo simulation
study, probability samples are drawn repeatedly from the population of interest by using a certain
sampling design. With respect to volunteer samples, the inclusion process often consists of non-
random elements. These nonrandom components prevent a meaningful application of a Monte-
Carlo simulation study with respect to repeated drawing of samples from the population. Thus,
when simulating volunteer samples, we rather propose to repeat the variable generation process
in each simulation run, which begins with draws from the multivariate normal distribution. This
process often is conducted in so-called (pure) model-based Monte-Carlo simulation studies (for
an explanation of a model-based or a pure model-based simulation study see Burgard 2015). As a
result, the generation process of the variables y, x1, x2, x3, and x4 is repeated in each simulation
run by applying the volunteer sampling scheme on each generated data set with variables
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yU , xU1 , x
U
2 , x

U
3 , and xU4 : Thus, we obtain volunteer samples for each simulation run for which the

weighting and complex estimation strategies are applied. In total, we generate 1,000 volunteer
samples in almost each scenario by using this procedure.

4.1.4. Additional continuous variable in multilevel regression model
To evaluate the weighting and complex estimation procedures associated with a variable that can
be considered in a multilevel model but which cannot be included in a weighting model, we gen-
erate the hierarchical continuous variable xU5, jkl on the weighting cell level:

xU5, jkl ¼ aþ b
xU1
j þ b

xU2
k þ b

xU3
l þ ujkl, (14)

where ujkl � Nð0, 1Þ:
Additionally, we create the corresponding variable xU5 at the personal level. According to this

variable, an element i has the corresponding value of xU5, jkl dependent on its cell membership jkl.

4.2. Scenarios

In the simulation study, we consider four different scenarios that vary the concrete numbers for
the parameters for the model generating the variable of interest y and for the inclusion model.
We further include or exclude certain weighting variables to reflect common application examples
from research practice. The exact parameter constellations of each scenario are provided in
Tables A.1–A.3 in the Appendix.

� Scenario 1a: a volunteer sample with a moderately skewed inclusion.
In this scenario, we draw observations using a volunteer sampling scheme that includes the
weighting variables x1 . . . x4: The correlations of the variable of interest and the auxiliary vari-
ables to the inclusion indication vector are moderate, which makes the inclusion mechanism
moderately skewed. Consequently, some sparse and empty cells occur. All weighting
approaches include the variables x1 . . . x4 in the weighting model and in the multilevel regres-
sion model for the complex approaches.

� Scenario 1b: a volunteer sample with a moderately skewed inclusion and an omitted variable
in the weighting and multilevel regression models:
In this scenario, we draw the sample in the same way as in Scenario 1a. The weighting
approaches, however, omit the variable x2, which is part of the inclusion model, from the
weighting model as well as from the multilevel regression model for the complex approaches.
The scenario reflects common situations in practice in which often it is not possible to iden-
tify and consider all the variables responsible for the inclusion mechanism.

� Scenario 2: a volunteer sample with a highly skewed inclusion.
As in all scenarios above, we include the weighting variables x1 . . . x4 in Scenario 2. In comparison
to Scenario 1a and 1b, the correlations of the variable of interest and the weighting variables on the

Table 1. Weighting and complex estimation strategies considered in the simulation study.

Weighting and complex estimation strategy Description

Unweighted Unweighted estimation
Postratification Standard poststratification without a multilevel

regression model
MLP Multilevel regression and poststratification
Raking Standard raking without a multilevel regression model
MRR Multilevel regression and raking
MRPCS Multilevel regression and population cell size estimation

using weighted least squares
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one hand and the weighting variables and the inclusion indication vector on the other hand are
strongly increased. This situation leads to a highly skewed inclusion mechanism with a lot of sparse
and empty cells. All the weighting approaches include the variables x1 . . . x4 in the weighting model
and in the multilevel regression model for the complex approaches. We create this scenario to
reflect volunteer samples with a high self-selection process.

� Scenario 3: a volunteer sample with a moderately skewed inclusion and an enriched multilevel
regression model.
This scenario examines a situation in which a multilevel model can be enriched by a variable that
cannot be included in a weighting model, for example, a continuous variable of a higher level in a
hierarchical structure. In this scenario, we use the variables x1 . . . x3 and the hierarchical variable
x5 in the inclusion model and when generating y. We do not include variable x5 in the weighting
model, but we include it in the multilevel regression model for the complex approaches. This
scenario mimics a situation, in which a characteristic that affects inclusion is known at the cell
level but not at an individual level, e.g., because it is not asked for in the survey.

4.3. Weighting and complex estimation strategies

In the simulation study, we consider all the estimation procedures described in the previous sections.
Table 1 shows the weighting and complex estimation strategies included in the simulation study.

All simulations are done in R (R Core Team 2017) using different R-packages. We conduct
the raking procedure by using the anesrake package (Pasek 2018). We perform the estimation of
the cell population sizes for the MRPCS approach by using the weighted least square method of
the mipfp package (Barth�elemy and Suesse 2018). We estimate the multilevel models using the
lme4 package (Bates et al. 2015).

Table 2. Comparisons of Monte-Carlo bias, Monte-Carlo variance (MCvar) and mean squared error (MSE).

Estimator MCbias MCvar MSE

Scenario 1a

Unweighted �0.2344 0.0002 0.0551
Poststratification �0.0107 0.0002 0.0003
MRP �0.0010 0.0001 0.0001
Raking �0.0035 0.0002 0.0002
MRR �0.0050 0.0002 0.0002
MRPCS �0.0121 0.0002 0.0003

Scenario 1b

Unweighted �0.2344 0.0002 0.0551
Poststratification �0.0526 0.0002 0.0030
MRP �0.0579 0.0002 0.0036
Raking �0.0496 0.0002 0.0027
MRR �0.0584 0.0002 0.0036
MRPCS �0.0589 0.0002 0.0037

Scenario 2

Unweighted �0.4661 0.0000 0.2173
Poststratification �0.1886 0.0034 0.0390
MRP �0.0685 0.0084 0.0131
Raking �0.3206 0.0036 0.1064
MRR �0.3350 0.0022 0.1144
MRPCS �0.0719 0.0064 0.0116

Scenario 3

Unweighted 0.1174 0.0004 0.0142
Poststratification 0.0053 0.0006 0.0006
MRP �0.0105 0.0003 0.0004
Raking 0.0516 0.0004 0.0031
MRR �0.0104 0.0003 0.0004
MRPCS �0.0104 0.0003 0.0005
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5. Results

We focus the results section on the bias in the estimation of the proportion of y¼ 1 and the effi-
ciency of the estimators. In our evaluation of the efficiency of the estimators we compare the
Monte-Carlo variances and the mean squared errors (MSEs) of the estimators (see Table 2). In
the following sections, we present the results of the simulation study for each scenario separately.
For each simulation round, we estimate the proportion for y¼ 1, and we present the results over
all rounds using box plots for the different estimators. The boxes represent the inner 50% of the
estimated proportions for y¼ 1, and the upper and lower bound of the boxes are the 25% and
75% quartiles. The big blue dot within each box denotes the mean proportion of y¼ 1 over all
rounds, and the vertical bars in the box denote the median. The graphs also show the population
benchmark which is shown as a red vertical line. Table B.1 in the Appendix shows Cram�er’s V
statistics for the associations between the inclusion vector and the weighting variables, and for
the relations between the weighting variables and the survey variable of interest y for each scen-
ario. The amount of empty cells is provided in Table A.2 and the resulting margins in Table B.2
in the Appendix.

5.1. Scenario 1a

The results of Scenario 1a (a volunteer sample with moderately skewed inclusion) are presented
in Figure 1. The unweighted estimate heavily underestimates the population benchmark, but all
the estimates of the weighting procedures are close to the benchmark, and estimates only slightly
differed. In this scenario, the inclusion selectivity is not strong, resulting in a low number of
empty or sparse cells. Consequently, standard weighting procedures perform as well as complex
ones. The MRP approach shows the lowest Monte Carlo variance and MSE.

5.2. Scenario 1b

In Scenario 1b, we use the same sample as in Scenario 1a, but we exclude one very influential vari-
able from the weighting and multilevel regression model. As can be seen in Figure 2, the unweighted
estimate is heavily biased, and all weighting procedures lead to estimates that come closer to the
benchmark. However, none of the standard nor complex procedures lead to an accurate estimate.
Also, none of the approaches is able to outperform the others in terms of bias and Monte-Carlo
variance. All multilevel approaches show similar MSEs. The findings strengthen the importance of
including all characteristics in the weighting procedures that are responsible for the inclusion pro-
cess. Naturally, in real applications, we do not have benchmarks for all important variables. For this
scenario, we also drop the important variable from the multilevel model, but in practice, it might be
possible to include such a variable in a multilevel model thereby improving the estimation using
complex weighting and estimation procedures. Scenario 3 provides some insight into how including
variables in the multilevel model that are not part of the weighting model affects the estimation.

5.3. Scenario 2

Figure 3 shows the results for Scenario 2 (a volunteer sample with highly skewed inclusion). The
unweighted estimate leads to a highly biased estimate. Standard weighting procedures are able to
improve the estimate and poststratification does much better than raking. The MRR approach is not
able to outperform standard raking. Two reasons why the MRR procedure is not able to reduce
Monte-Carlo bias as compared to standard raking are as follows: first, there are many empty sample
cells. As a result, the modified raking approach cannot improve the estimation. Second, in this
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scenario, the same variables are used in the multilevel and in the weighting models so that the multi-
level model cannot achieve an improvement over the standard raking method.

The MRP and MRPCS approaches heavily reduce Monte-Carlo bias as compared to standard
raking and even standard poststratification. It is particularly notable, that the estimation using the
MRCPS approach lead to a Monte-Carlo bias reduction similar to the MRP approach when using
only marginal population information. The Monte-Carlo variances of the MRCPS and MRP
approach are similar as well resulting in comparable MSEs. Standard raking and poststratification
show lower variances than the MRP and MRCPS approach but higher MSEs due to the higher
biases. We assume that the bias reduction of the MRP and MRCPS weighting and complex esti-
mation procedures is due to considering all population cells, even the cells without sample ele-
ments, which leads to a stabilized estimation. However, the MRP and the MRPCS approaches
also show some larger outliers that are the result of the highly skewed inclusion mechanism and
the skewed marginal distributions of this scenario.

5.4. Scenario 3

The results of Scenario 3 (a volunteer sample with moderate correlations between the weighting varia-
bles and the inclusion probability and enriched multilevel regression model) are presented in Figure
4. The unweighted procedure leads to an overestimation of Pðy ¼ 1Þ as compared to the benchmark.
The standard raking procedure is able to reduce bias but still leads to overestimation. The raking pro-
cedure does not include variable x5 in the weighting model, since it is modeled continuously and is
not measured in the survey. However, x5 can be included in the multilevel model. As a result, the
estimates of the MRP approach and the MRR and MRPCS approaches are much closer to the bench-
mark. For these three approaches, the bias as well as the efficiency are very similar. Surprisingly, the
standard poststratification approach is able to reduce bias as compared to the standard raking
approach, and yields estimates that are close to the benchmark. The Monte-Carlo variance of the
standard poststratification approach, however, is higher than for the multilevel approaches. Although
the poststratification procedure does not include x5, due to the variable generation process based on
model 14, some larger correlations exist between variable x5 and the other weighting variables. It
seems that some information on variable x5 is reproduced over the joint distributions.

6. Summary and conclusion

In this study, we propose two practical approaches to make use of multilevel regression estima-
tions to stabilize weighting procedures when only population margins are available. In a simula-
tion study, we evaluate the performance of our two approaches (MRR and MRPCS) as compared
to standard raking and poststratification approaches and multilevel regression and poststratifica-
tion (MRP). The present study aimed to be highly relevant for social researchers and very applic-
able, so we only used standard R packages and well established algorithms.

The simulation study shows that for the scenarios with a slightly or moderately skewed inclusion
mechanism (Scenario 1a), all standard and complex weighting and estimation approaches work simi-
larly well. In a scenario with highly skewed inclusion propensities (Scenario 2), however, we find big
differences between the weighting approaches. MRP and MRPCS are the only approaches that are able
to highly reduce Monte-Carlo bias and MRR can only slightly improve the estimation. The inferior
performance can be attributed to the high number of empty and sparse cells introduced by the very
skewed inclusion mechanism. However, highly skewed inclusion and high numbers of empty cells are
typical findings for a volunteer panel for which the MRPCS approach seems especially promising.

Whenever we have a high proportion of empty cells or when we are able to include informa-
tion on variables of the inclusion model that are not available for the weighting model in the
multilevel regression model—e.g., variables that are not captured in the survey—the MRCPS
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approach reduces bias considerably as compared to standard raking. Unlike the MRPCS
approach, the MRR approach cannot deal with empty cells and cannot outperform standard rak-
ing when the proportion of empty cells is high. However, with moderate numbers of empty cells,
the MRR approach produces comparable results to the MRPCS approach while including fewer
estimation steps than the MRPCS approach. The MRR approach consumes less degrees of free-
dom and is potentially more stable. Both of our proposed approaches, similar to standard raking,
depend on the assumption of independent effects of weighting variables on inclusion.

We do not find large differences between the approaches with respect to the omitted variable
scenario (Scenario 1b), which means, that no approach is able to compensate for an under speci-
fication of the weighting model.

Figure 1. Scenario 1a—Volunteer sample with moderately skewed inclusion.

Figure 2. Scenario 1b—Volunteer sample with moderately skewed inclusion and omitted variable in the weighting and multi-
level regression models.
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In Scenario 3, we were able to add one relevant variable that could not be considered in the
weighting model in the multilevel regression model. We found that all complex weighting
approaches to performed equally well in terms of bias and variance, and specifically, that our
approaches performed much better than standard raking. In practice, one cannot assume to per-
fectly know the inclusion model or to have information on all the relevant variables of the inclu-
sion process. Therefore, it is not realistic to rule out bias completely, but the aim should be to
reduce bias as much as possible.

In our simulation scenarios, all complex estimation procedures make use of the same set of auxil-
iary variables. The only difference is that MRP uses joint distributions of the weighing variables,

Figure 3. Scenario 2—Volunteer sample with a highly skewed inclusion.

Figure 4. Scenario 3—Volunteer sample with highly skewed inclusion. The multilevel model is enriched with information which
cannot be included in the weighting model.
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whereas MRR and MRCPS use the margins of the weighting variables. In practice, however, margins
usually are available for a higher number of variables than are available for joint distributions, since
margins can be gathered from different official data sources. Also, margins usually are aggregated to a
lower degree. Thus, often more population information can be utilized working with margins than
when working with joint distributions. Thus, it may be worth using complex weighting and estimation
methods using a richer set of margins, instead of using a joint distribution of only a few variables. The
comparable results for the MRP and MRCPS approaches in our simulation are especially promising.

In most of our scenarios, the multilevel regression model is very simple and only makes use of
variables that are part of the weighting model as well. More complex models including a variety
of additional hierarchical variables and potentially interactions in the multilevel model are likely
to reduce bias even further for all complex models.

The modifications are described with respect to an application of volunteer panels, that do not
have design or sampling weights by definition. The MRR and MRCPS approach, as described in
the previous sections, can also be applied for probability sampling designs with equal inclusion
probabilities, i.e., simple random sampling designs or a so-called self-weighting designs. However,
if a more complex sampling design is applied that leads to unequal inclusion probabilities, sam-
pling weights need to be computed. Sampling weights can be included in both of our modifica-
tions. For the MRR approach, the sampling weights cannot be directly included in the raking
procedure because we apply the raking on the cell level but not individual level. The variables
that are used to compute the sampling weights can, however, be included as additional weighting
variables. The sampling weights can directly be considered in the multilevel approach, for
example, by using the procedures described in Rabe-Hesketh and Skrondal (2006), Pfeffermann
et al. (1998) and Asparouhov and Muthen (2006) (see also Gelman (2007) and West and Galecki
(2012) for general discussion on this issue). The same procedures can be used to integrate sam-
pling weights in the multilevel model for the MRCPS approach. Furthermore, it is possible to dir-
ectly include the sampling weights in the estimation of the population sizes N̂ jklv: In the
estimation procedures by Little and Wu (1991) that we use in our research, this can be done by
using the design weighted sample cell frequencies. The sampling weights are then considered in
the estimation of the population cell sizes N̂ jklv that are used to weight the cell propensities.

Since the approaches we described are applied to non-probabilistic volunteer panels with dif-
ferent degrees of selectivity, we cannot compute variance estimates, e.g., to generate confidence
intervals. This is a serious limitation when applying our approach—like many other approaches—
to a nonprobabilistic sample. In the case that a comparable probability sample covering the gen-
eral population of interest is available, variances might be estimated using quasi-randomization,
superpopulation or double robust modeling (Elliott and Valliant (2017); Chen, Li, and Wu
(2020); for an overview see Cornesse et al. 2020). More research is needed on how to combine
these methods with our approaches. When applying our approach on a probabilistic sample,
resampling procedures (for a detailed explanation of these procedures see Shao and Tu 1995) like
the bootstrap (Efron 1979) can be applied to estimate the variance for our proposed approaches.
The variance estimates can be used to compute confidence intervals and perform population
inference. As a further consequence of using a non-probabilistic sampling design, the efficiency
of the procedures discussed in this paper is evaluated using the Monte-Carlo variance.

Although our results are very promising, further research also should be conducted on how to
improve the approaches. For example, in our simulation study, we use rather simple approaches to
estimate the cell population sizes in the MRCPS method. In practical applications, the estimation of
cell population sizes might be improved by using small area estimation approaches, including more
information from additional population information sources from official statistics. Another possibility
for improving the estimation could be to smooth the estimated cell population sizes that are obtained
via weighted least squares and by using prior information to determine the smooth parameter. The
usefulness of such extensions, however, needs to be discussed in further research.

18 C. BRUCH AND B. FELDERER



Acknowledgments

The authors thank Matthias Sand, Andreas Fuest and the anonymous reviewer for their helpful comments on
this research.

Appendix

A. Parameter values in the simulation study

Table A.1. Values for the parameters in the model that generates the survey variable of interest y that is depending on the
weighting variables x1:::x4:

Parameter Category Scenario 1 Scenario 2 Scenario 3

d �0.5 �0.5 �12
cx1j½i� j¼ 1 �7 �7 �0.2

j¼ 2 0 0 0
j¼ 3 �0.2 �0.2 �0.2
j¼ 4 0.4 0.4 0.4
j¼ 5 7 7 2

cx2k½i� k¼ 1 �7 �7 �1.5
k¼ 2 0.4 0.4 0.4
k¼ 3 0 0 0
k¼ 4 �0.2 �0.2 �0.2
k¼ 5 7 7 1.5

cx3l½i� l¼ 1 1.5 1.5 1.5
l¼ 2 �0.4 �0.4 �0.4
l¼ 3 0 0 0
l¼ 4 0.9 0.9 0.9

cx4v½i� v¼ 1 0.1 0.1 –
v¼ 2 0.1 0.1 –
v¼ 3 0.1 0.1 –
v¼ 4 0 0 –
v¼ 5 0.1 0.1 –

cx5 – – – 0.8

Table A.2. Values for the parameters in the inclusion model generating the inclusion propensities x that are depending on
the weighting variables x1:::x4:

Parameter Category Scenario 1 Scenario 2 Scenario 3

k �1 1e� 07 �14.5
nx1j½i� j¼ 1 1 50 �0.1

j¼ 2 0 0 0
j¼ 3 �0.2 �0.2 �0.2
j¼ 4 0.4 0.4 0.4
j¼ 5 �1 �50 0.1

nx2k½i� k¼ 1 0 0 0
k¼ 2 �1 �55 �1e� 07
k¼ 3 �1 �55 �1e� 07
k¼ 4 �1 �50 �1e� 07
k¼ 5 �1 �50 �1e� 07

nx3l½i� l¼ 1 0 0 0
l¼ 2 0.4 0.4 0.4
l¼ 3 0.3 0.3 0.3
l¼ 4 0.2 0.2 0.2

nx4v½i� v¼ 1 1 50 –
v¼ 2 0.1 0.1 –
v¼ 3 0 0 –
v¼ 4 0.2 0.2 –
v¼ 5 �1 �50 –

nx5 – – 0.9
Weighting cells 500 500 100
Empty cells 217.82 390.97 3.75

(43.6 %) (78.2 %) (3.7 %)

The table includes the numbers of the resulting weighting cells and the amount of empty weighting cells averaged over all
simulation rounds.
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B. Measures of association of the weighting variables and the survey variable of
interest and of the weighting variable and the inclusion vector

Table A.3. Values for the parameters in the model that generates x5 that is depending on the weighting variables x1:::x3:

Parameter Category Scenario 3

a 15
bx1j j¼ 1 �0.2

j¼ 2 0
j¼ 3 �0.2
j¼ 4 0.2
j¼ 5 0.3

bx2k k¼ 1 �1
k¼ 2 0.4
k¼ 3 0
k¼ 4 �0.2
k¼ 5 1

bx3l l¼ 1 �0.0001
l¼ 2 �0.0001
l¼ 3 0
l¼ 4 0.0001

Table B.1. Cram�er’s V for the association between the weighting variables x1:::x4 and the survey variable of interest y, the
association between the inclusion vector z and the survey variable of interest y, and the association between the weighting
variables and the inclusion vector z.

Association Scenario 1 Scenario 2 Scenario 3

CVx1, y 0.68 0.68 0.40
CVx2, y 0.59 0.59 0.32
CVx3, y 0.14 0.14 0.23
CVx4, y 0.12 0.12 0.63
CVz, y 0.28 0.51 0.18
CVx1, z 0.32 0.51 0.27
CVx2, z 0.33 0.77 0.10
CVx3, z 0.08 0.11 0.09
CVx4, z 0.24 0.36 0.46

Table B.2. Simulated margins for the weighting variables x1:::x4:

Variable Category Scenario 1 Scenario 2 Scenario 3

x1 1 408.21 574.02 98.83
2 155.44 165.17 175.05
3 96.20 94.38 99.41
4 255.65 149.94 240.59
5 84.50 16.49 386.12

x2 1 482.35 853.54 224.57
2 216.50 62.50 252.55
3 175.31 25.46 232.10
4 84.08 46.64 170.13
5 41.76 11.86 120.66

x3 1 266.09 317.98 210.13
2 288.97 268.90 267.14
3 246.11 229.88 262.46
4 198.82 183.24 260.27

x4 1 411.71 519.74
2 229.30 219.88
3 199.71 168.47
4 128.58 80.58
5 30.70 11.33
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